
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-660

A Proposal for Standard Linear Algebra
Subprograms

R. J. Hanson
Washington State University

F T. Krogh and C. L. Lawson
Jet Propulsion Laboratory

(NASA-CR- 136216) A PROPOSAL FOR STANDARD N74-13288LINEAR ALGEBRA SUBPROGRAMS (Jet Propulsion

Hab) - p HC $3.o00 CSCL 12A

Unclas
G3/19 24601

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

November 15, 1973

Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration

/

PREFACE

The work described in this report was performed by the Data Systems

Division of the Jet Propulsion Laboratory.

Correspondence should be directed to either R. J. Hanson, Dept. of

Computer Science, Johnson Hall, Washington State University, Pullman,

Washington, 99163, or F. T. Krogh and C. L. Lawson, Jet Propulsion Lab-

oratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena,

California, 91103.

PREJPL Technical Memorandum 33-660 TT

JPL Technical Memorandum 33-660 iii

CONTENTS

Introduction 1

Convention Regarding Vector Storage 3

Convention Regarding N < 0 4

Appendix A. A Modified Givens Transformation 8

Appendix B. Some Implementations of DSDOT.11

References . 14

TABLES

Proposed Subprograms in Class I 5

Proposed Subprograms in Class II 6

FIGURES

B-1. Fortran Code for DSDOT 12

B-2. UNIVAC 1108 Assembly Code for DSDOT 12

B-3. IBM 360/75 Assembly Code for DSDOT 13

PRECEDING PAGE BLANK NOT FILMED

JPL Technical Memorandum 33-660 v

ABSTRACT

This memorandum proposes a set of Fortran

callable subprograms which will be useful in the develop-

ment of efficient portable ANSI Fortran subprograms and

applications programs in the area of linear algebra.

vi JPL Technical Memorandum 33-660

Introduction

The purpose of this report is to propose a set of standard subprograms

(modules) for performing many of the elementary operations of numerical

linear algebra. The goal is to make it more feasible to produce efficient

portable Fortran programs in the area of linear algebra.

By adopting a set of standard subprogram names and parameter lists for

certain fundamental operations it becomes worthwhile to make the effort of

producing efficient assembly coded implementations of these subprograms for a

wide variety of different computer systems. For example, it has been found

[Krogh (1)] that the use of assembly coded modules in a double precision

program for solving linear equations based on Householder transfZormations

with column scaling and column interchanges reduced the execution time on a

Univac 1108 by 15% to 30% relative to the time required when carefully written

Fortran modules were used.

We intend this report as a specific proposal about which discussion of

these ideas can be focused. We hope that readers of this report will com-

municate to us their thoughts on the general usefulness of such a set of standard

subprograms as well as comments on specific details.

We separate this proposed set of subprograms into two classes to

emphasize the different levels of importance which we attach to the two classes.

Class I contains subprograms implementing the operations that occur as

the most frequently executed innermost loops in many of the fundamental

algorithms of linear algebra. For this reason increases in efficiency of

executing these operations may be expected to be particularly significant in

improving the efficiency of the programs in which they are used.

We feel that it would represent a significant advance in the technology of

supporting efficient portable Fortran programs if carefully programmed

assembly coded subprograms were available on a wide variety of computer

systems for these Class I functions and if persons writing portable Fortran

subprograms for the fundamental algorithms of linear algebra would use these

Class I functions where applicable.

The operations which we feel belong in Class I according to the above

stated criteria are: (1) the dot product (inner product) of two vectors, (2) the

JPL Technical Memorandum 33-660

elementary vector operation, y := ax + y where x and y are n-vectors and a

is a scalar, and (3) the Givens 2 x 2 orthogonal transformation applied to a

2 x n submatrix.

In the case of the Givens transformation there are presently two com-

petitive forms in which it can be implemented, the standard (4-multiply, 2-

add) form and a modified (2-multiply, 2-add, no square root) form. For the

sake of discussion we give proposed subprogram specifications for both of these

forms.

Note that we have omitted from Class I versions of the dot product which

require arithmetic precision extended beyond that of standard double-precision

or the notion of double-precision complex arithmetic since these concepts are

not at present defined in ANSI FORTRAN. There is a chance that when the

revised Fortran standard [FORTREV] is finalized by ANSI it will define a

double-precision complex variable type. We propose that the specification of

subprograms using double-precision complex arithmetic should await finaliza-

tion of FORTREV.

The subprograms in Class II represent operations which occur frequently

in computational linear algebra but not in the most frequently executed loops.

Thus their efficiency may have less impact than Class I subprograms. In fact

however it is not easy to predict the relative importance of different sub-

programs in a particular application and actual timings may show Class II

subprograms to be of more importance than one might expect. For instance in

the tests mentioned previously, [Krogh (1)], about 1/3 of the saving at N = 100

and about 1/2 at N = 15 were due to the assembly coded module for the

euclidean norm while the rest of the savings were due to the assembly coded

modules for the inner product and the elementary vector operation.

Aside from the question of efficiency the Class II subprograms are

proposed for their potential convenience in the writing of programs for linear

algebraic problems. The use of these subprograms may improve the self-

documenting quality of the Fortran programs in which they are used and may

tend to reduce the occurrence of coding errors by relieving the user of one

level of coding detail.

JPL Technical Memorandum 33-660

For the purpose of experimenting with this approach to writing linear

algebra programs we have produced Fortran coded and Univac 1108 assembly

language coded subprograms for most of the Class I modules and Fortran coded

subprograms for most of the Class II modules.

After allowing a period of time for discussion of these ideas it is our plan

to bring the following set of subprograms into being:

(1) Portable Fortran coded subprograms for all of the modules except

for the extended precision inner-product module.

(2) Assembly coded subprograms for Class I modules for as many

different machines as possible.

We invite persons willing to undertake the assembly coding of these

Class I modules on machines other than the Univac 1108 and the IBM 360/75 to

do so and communicate the resulting code to us. We will depend upon such

contributions to achieve wide machine coverage with this set of subprograms.

Persons willing to write assembly versions of these subprograms for

different machines may obtain listings of Fortran versions and test drivers

from the authors.

Convention Regarding Vector Storage

An N-vector x = (xI, ... ,X N) to be referenced by any subprogram

described in this memorandum will be identified in the subprogram parameter

list by a pair of symbols, say X and INCX, where X is the name of an array of

type REAL, DOUBLE PRECISION, or COMPLEX, as appropriate, and INCX is

an INTEGER type variable indicating the index increment between successive

components of x in the array X. Tle location of components of the vector x

within the array X is specified as follows:

If INCX > 0 X(1 + (I - 1)*INCX) = x I I = 1, ... , N

If INCX < 0 X(1 + (N - I)- IINCX) xI I = 1, ..., N

JPL Technical Memorandum 33-660 3

For example if N = 4 and INCX = 2 we have X(1) = xl, X(3) = x 2 ,
X(5) = x 3 , and X(7) = x 4 , while if N = 4 and INCX = -2 we have X(7) = xl,
X(5) = x 2 , X(3) = x 3 , and X(1) = x 4 .

In some of the subprograms, as noted below, INCX is required to be

nonnegative.

Convention Regarding N < 0

FUNCTION subprograms return the value zero when N < 0. Exceptions

are those FUNCTIONs which return an index. These return the index, 1, if

N < 0.

4 JPL Technical Memorandum 33-660

Proposed Subprograms in Class I

Operation Usage Statement Remarks

N
w:= E xiYi SW = SDOT(N, SX, INCX, SY, INCY) SW, SDOT, SX(), SY(), single precision

i= 1

N
w:= E xi DW = DSDOT(N,SX, INCX, SY, INCY) DW,'DSDOT double precision

i
= l

i SX(),SY() single precision

N
w : xiYi DW = DDOT(N, DX, INCX, DY, INCY) DW, DDOT, DX(),DY() double precision

i= 1

N
w :=ExiYi CW =CDOT(N, CX, INCX, CY, INCY, 0) CW, CDOT, CX(),CY() complex

N _
w := lxii CW = CDOT(N, CX, INCX, CY, INCY, 1) CW, CDOT, CX(),CY() complex

y = ax+y ALL SELVOP(N,SA,SX,INCX,SY,INCY) SA,SX(),SY() single precision.

y:= ax+y CALL DELVOP(N, DA, DX, INCX, DY, INCY) DA, DX(),DY() double precision.

y:= ax+y CALL CELVOP(N, CA, CX, INCX, CY, INCY) CA, CX(),CY() complex.

Apply Givens CALL SG2(N, SX, INCX, SY, INCY, C, S) SX(),SY(), C, and S single precision
reflection matrix See SG1 in Class II for computation of

:- to the C and S.

2 x n matrix

I:: ::]
Apply Givens CALL DG2(N, DX, INCX, DY, INCY, DC, DS) DX(), DY(), DC and DS are double precisin.
reflection matrix See DGI in Class II for computation of

[c sCto the

DC and DS.

2 x n matrix

Apply the modified CALL SMG2(N, SX,INCX, SY, INCY) [uses COMMON/ SX(), SY() Ti, T2, SRA, and SRB
Givens reflection SMG3/IFLAGl, IFLAG2, TI, T2, SRA, SRB] single precision. See SMGl in Class
transformation [See II for computation of the quantities in
Appendix A] to the COMMON.
2 x n matrix

Apply the modified CALL DMG2(N, DX, INCX,DY, INCY) [uses COMMON/ DX(), DY(), DTI, DT2, DRA, DRB
Givens reflection DMG3/IFLAGI,IFLAG2, DT1,DT2, DRA, DRBI double precision. See DMGI in Class

transformation [See II for computation of the quantities in
Appendix A] to the COMMON.
2 x n matrix

..JPL Technical Memorandum 33-660 5

JPL Technical Memorandum 33-660 5

Proposed Subprograms in Class II

Operation Usage Statement Remarks

Compute 2 1/2 CALL SGl(A, B, C, S) A, B, C, and S single precision

r :(a2+b
1

c := a/r, s := b/r
a :=r
defining the Givens
reflection matrix

[c s
Compue 12 CALL DG1(DA, DB, DC, DS) DA, DB, DC, and DS double precision.

r (a +b
)

c := a/r, s:= b/r
a :=r
defining .the Givens
reflection matrix

s -c]
Compute parameters CALL SMGl(SCA, SCB,A, B) [uses COMMON/ SCA, SCB,A, B, Tl, T2, SRA, SRB single
defining a modified SMG3/IFLAG1, IFLAG2, T1, T2, SRA, SRB] precision; IFLAGI, IFLAG2 integer.

Givens reflection.
See Appendix A.

Compute parameters CALL DMG1(DSCA, DSCB, DA, DB) [uses COMMON/ DSCA, DSCB, DA, DB, DTI, DTZ, DRA,
defining a modified DMG3/IFLAG1, IFLAG2, DT1, DT2, DRA, DRD] DRB double precision; IFLAGI,

Givens reflection. IFLAG2 integer.

See Appendix A.

N
w :=b+ xiYi DW = DXDOT(N, DX, INCX, DY, INCY, DB, XC, 0) DW, DXDOT, DX(), DY(), DB, double

i=l precision; XC extended precision; XC
is represented with a single precision
array of length 5; XC is replaced by

N
b+ E x iy i

.
i= 1

N
w := b+ E x.yi+c DW = DXDOT(N, DX, INCX, DY, INCY, DB,XC, 1) DW, DXDOT, DX(), DY(), DB double

i=l precision; XC extended precision; XC
N

is replaced by b + Z xi i+c.
i=l 1

Copy x into y CALL SCOPY(N, SX, INCX, SY, INCY) SX(),SY() single precsion

Copy x into y CALL DCOPY(N, DX, INCX, DY, INCY) DX(), DY() double precision

Copy x into y CALL CCOPY(N, CX, INCX, CY, INCY) CX(), CY() complex

Interchange x and y CALL SSWAP(N, SX, INCX, SY, INCY) SX(),SY() single precision

Interchange x and y CALL DSWAP(N, DX, INCX, DY, INCY) DX(), DY() double precision

Interchange x and y CALL CSWAP(N, CX, INCX, CY, INCY) CX(), CY() complex

In all of the remaining subprograms INCX 2 0 is required.

-N /Z

w := xi SW =S2NRM(N, SX, INCX) SW,S2NRM, SX() single precision

1/2

w E x. DW = D2NRM(N, DX, INCX) DW, D2NRM, DX() double precision

6 JPL Technical Memorandum 33-660

Proposed Subprograms in Class II (contd)

Operation Usage Statement Remarks

w : x.i2 SW = SC2NRM(N, CX,INCX) SW, SC2NRM, single precision; CX()
i= i . complex.

[N 1/2 SW = SD2NRM(N, SX, INCX) SW, SDZNRM, SX() single precision.

w: xi Double precision arithmetic used
i= 1 internally.

w:= Ix.I DW = DX2NRM(N, DX,INCX) DW, DX2NRM, DX() double precision.
i=1 Extended precision arithmetic used

internally.

N
w : Ixil SW = SASUM(N, SX, INCX) SW, SASUM, SX() single precision

i=l 1

N
w E Ix.i DW = DASUM(N, DX, INCX) DW, DASUM, DX() double precision

i= 1

N
w : (IReal(xi)I+lImag(xi)]l SW = SCASUM(N, CX, INCX) SW, SCASUM single precision; CX(

i= 1 complex.

x ax CALL SSCALE(N, SA, SX, INCX) SA, SX() single precision

x :ax CALL DSCALE(N, DA, DX, INCX) DA, DX() double precision

x ax CALL CSCALE(N,CA, CX, INCX) CA, CX() complex

x ax CALL CSSCAL(N, SA, CX, INCX) SA single precision; CX() complex.

Find indices i and CALL SMNMX(N, SX, INCX, IMIN, IMAX) SX() single precision

imax correspomning

to the smallest and
largest components of x.

Find indices i and CALL DMNMX(N, DX, INCX, IMIN, IMAX) DX() double precision
i correspomncingmax
to the smallest and
largest components of x.

Find an index i IMAX = ISAMAX(N, SX, INCX) SX() single precision
corresponding
to the maximum abso-
lute value of components
of the vector x.

Find an index ima x IMAX = IDAMAX(N, DX, INCX) DX() double precision

corresponding to the
maximum absolute value
of components of the
vector x.

Find an index ima x IMAX = ICAMAX(N, CX, INCX) CX (complex
max

identifying the compon-
ent of the complex vector
x having maximum sum
of magnitudes of real and
imaginary parts.

JPL Technical Memorandum 33-660 7

APPENDIX A

A MODIFIED GIVENS TRANSFORMATION

Introduction

The standard Givens reflection transformation is a 2 x 2 matrix

G =[s]. For an arbitrary 2 vector x = , the entries c and s are
computed by r b(a2 +b2) I / 2 a a 0

computed by r = (a 2 + b)/2, c =a/r and s = b/r, and this gives Gx =].

The modified Givens transformation [Gentleman (2) and (3)] is a varia-

tion of the standard Givens transformation. This is done by considering the

vector x written in factored form x = D1X I . Here D1 is a 2 x 2 diagonal

matrix. The matrix G is constructed so that Gx = []. The identity GD 1

D2H is the critical point. (Here the matrix D2 is 2 x 2 and diagonal.) The

2 x 2 matrix H has one of the two forms.

H = [tl -t or H 1[t

With the standard Givens transformation formation of the product matrix

GAZ x n requires 4n multiplications and 2n additions. With the modified

Givens transformation the matrix A is always considered in factored form

A = D1 A 1 . Noting that GA = G(D 1A 1) = DZ(HA 1), allows the matrix A2 = HA l

to be computed with 2n multiplications and 2n additions because of the way the

matrix H is defined above.

No Square Roots

Only squares of elements of the 2 x 2 diagonal matrix D 1 are involved in

the computation of the matrix H and (the squares of) the elements of the updated

2 x 2 diagonal matrix D2 . This remark obviates the need for computing

square roots.

8 JPL Technical Memorandum 33-660

APPENDIX A (contd)

Rescaling

The elements of the diagonal matrices generated will generally decrease

as further transformations are constructed. This may require occasional

rescaling to avoid underflow danger. The identity D1A 1 = (D 1 S-1)(SA 1) D 1A 1

(S an arbitrary 2 x 2 diagonal matrix) shows that the factorization can be

rescaled whenever desired.

We have provided for rescaling to be performed whenever either diagonal
-12

term of the matrix D2 is less than 2

The matrix D 1 can be initialized to be the 2 x 2 identity matrix, for

example.

Coding Details

The modified Givens transformation is called with the Fortran statement

CALL SMGI (SCA, SCB, A, B)

The standard Givens transformation which is implicitly constructed in this

subroutine eliminates the second entry of the 2-vector

SCA1/2A

SCB 1 / 2z BJ

The first entry of the product matrix H[A replaces A in storage. The squares

of the entries of the diagonal matrix D2 replace SCA and SCB in storage.

When rescaling occurs both the first entry of H [B] and the diagonal

terms SCA and SCB are appropriately modified.

The transformation is applied to a 2 x n matrix D 1 1 n with the

Fortran statement.

CALL SMG2(N, X, INCX, Y, INCY).

JPL Technical Memorandum 33-660 9

APPENDIX A (contd)

The various parameters necessary to apply this transformation are

communicated from SMG1 to SMG2 by means of the COMMON statement

COMMON /SMG3/IFLAGl, IFLAG2, TI, T2, SRA, SRB

These parameters are defined as follows:

IFLAG1 Indicates the form of the matrix H:

IFLAG1 = 0 when H =

IFLAG1 = 1 when H= [2 tj
IFLAG2 Rescaling indicator

IFLAG2 = 0 if no rescaling is required

IFLAG2 = 1 when rescaling is required

Tl, T2 Nonunit entries of the appropriate form of the 2 x 2

matrix H.

SRA, SRB Diagonal entries of the diagonal matrix S which will be

applied to the matrix H x1 n when IFLAG2 = 1.

The values of SRA and SRB, when IFLAG2 = 1, are
24 12

either 224, 2 12, or 1.

10 JPL Technical Memorandum 33-660

APPENDIX B

SOME IMPLEMENTATIONS OF DSDOT

To provide concrete examples of our present thinking on implementations

of these subprograms we include listings of three versions of DSDOT. Figure B-i

is Fortran code, Figure B-2 is Univac 1108 assembly code and Figure B-3 is

IBM 360/75 assembly code.

In the Fortran code note the use of DBLE to achieve double length

accumulation. With some Fortran compilers double length accumulation would

occur even without the DBLE just because DSDOT is of type DOUBLE

PRECISION. The DBLE is necessary however on some compilers. This

leads to unnecessary inefficiency on some compilers which would not need the

DBLE. This is an example of the present impossibility of writing portable

Fortran code which will be efficient on a variety of machines.

Another problem arises in handling indexing with the index spacing

specified by the parameters INCX and INCY. The statement at line 19 gen-

erates quite efficient machine code on the Univac 1108 but is not within the

specifications of ANS Fortran. The alternative code given as comments in

lines 21-23 is legal ANS Fortran but generates much less efficient code on the

Univac 1108.

The comment cards "C1", "C2", and "C3" delimit the two different

versions of Fortran code. The comment cards "C4" and "C5" delimit the

initial descriptive comments. We are using these comment cards "Cl" through

"C5" as reference marks for performing certain editing operations on the

whole set of subprograms.

JPL Technical Memorandum 33-660 11

I DOUBLE PRECISION FUNCTION DSDOT(N.X.INCX.Y.INCY)
2 C4
3 C DOT PRODUCT OF SNOL. PREC. VECTORS USING DBLE. PREC. ACCUMULATION.
4 C
5 C COMPUTES DSDOT - SUM FROM I TO N OF A(I)*B(I) WHERE
6 C A(I) = X(1-INCX+I*INCX) IF INCX .GE. 0
7 C A(I) - X(1-N*INCX+I*INCX) IF INCX .LT. 0
8 C B(I) DEFINED SIMILARLY WITH X AND INCX REPLACED BY Y AND INCY
9 CS

10 REAL X(1).Y(1)
11 DSDOT - O.D0
12 IF(N .LE. O)RETURN
13 IF(INCX .LT. 0) 00 TO 2
14 KX - -INCX + 1
s GO TO 4

16 2 KX - -N*INCX + 1
17 4 IF(INCY .LT. 0) 00 TO 6
18 KY - -INCY + 1
19 GO TO 8
20 6 KY - -N*INCY + 1
21 8 CONTINUE
22 DO 10 I - I.N
23 C1
24 DSDOT - DSDOT + DBLE(X(I*INCX +-KX))*DBLE(Y(i*iNCY + KY))
25 C2
26 C JX - I*INCX + KX
29 C JY - I*INCY + KY
28 C DSDOT - DSDOT + DBLE(X(JX))*DBLE(Y(JY))
29 CS
30 10 CONTINUE
31 RETURN
32 END

Figure B-I. Fortran Code for DSDOT

1 AXRS
2 $(1).
3
4 INNER PRODUCT OF SNGL. PREC. VECTORS USING DBLE. PREC. ACCUMULATION.

6 TO BE USED AS FORTRAN FUNCTION DSDOT(N.X.INCX.Y.INCY)
7 WHERE DSDOT IS OF TYPE DOUBLE PRECISION. X AND Y ARE OF TYPE REAL.

8 AND DSDOT- SUM FROM 1-1 TO N OF A(I)*B(I) WHERE

9 A(I) - X(1-INCX+I*INCX) IF INCX.GE.0
10 A(I) - X(C-N*INCX+I*INCX) IF INCXKLT.0
11 . B(I) DEFINED SIMILARLY. WMITH AND INCX REPLACED BY Y AND INCY
12
13 DSDOT* DSL A0,72 .STORE 0 IN AO AND Al
14 LR RS.*0.X11 STORE N IN R3

15 JGD RS.NPOS . STORE N-1 IN R3 AND TEST N

16 J 6.X1. EXIT IF N.LE.0
17 NPOS DS AS.SAVE SAVE REGISTERS AG AND Al
18 LAU A2.*1.X11 . LOAD ADDRESS OF X
19 LA.U A3.*3.X . LOAD ADDRESS OF Y
20 LXI A2.2,.X11 . LOAD INCREMENT ON X
21 LXI A3.4,.X11 . LOAD INCREMENT ON Y
22 JP A2.TINCY . TEST IF INCX.GE.0
23 LNA A4.A2 . ADD -IICX(N-1)
24 SSA A4.18 . TO THE BASE
25 MSI A4.RS ADDRESS
26 Ali A2.A4 FOR X
27 TINCY JP A3.LOOP .TEST IF INCY.GE.0
28 LNA A4.AS . ADD -INCY*(N-1)
29 SSA A4.18 TO THE BASE
30 MSI A4.R3 . ADDRESS
31 AH A3.A4 . FOR Y
32 BEGIN LOOP TO FORM INNER PRODUCT
33 LOOP FEL A4.0.*A2 . LOAD X. CONVERT TO DOUBLE. AND INC. INDEX
34 FEL A6.0.*AS . LOAD Y. CONVERT TO DOUBLE. AND INC. INDEX
35 DFM A4.A6 . MULTIPLY X TIMES Y
36 DFA AO.A4 . ACCUMULATE INNER PRODUCT
37 JGD RS.LOOP . END OF INNER PRODUCT LOOP
38 DL A6.SAVE . RESTORE REGISTERS A6 AND A7
39 J 6.X11 . RETURN FOR N.GT.0
40
41 S(O)
42 SAVE + OD . PLACE TO SAVE AG AND A7
43 END.

Figure B-2. UNIVAC 1108 Assembly Code for DSDOT

12 JPL Technical Memorandum 33-660

2 DOUBLE PRECISION FUCTION DSDOT (N.X.INCX.Y.INCY)
3
4 COMPUTED AS SUM FROM I =1 TO N OF A(I).B(I)
5 WHERE X() AND Y() ARE OF TYPE REAL WITH
6
7 X(I-INCX+I*INCX) = AC() IF INCX .GT. 0
8 *
9 * X(I-N-INCX+I-INCX) = A(I) IF INCX .LE. 0 *

10 *

I1 * SIMILAR DEFINITIONS FOR Y() AND B(I)
12 * °
13 * THE SUM IS ACCUMULATED IN DOUBLE PRECISION
14 *
15 * WRI'I'EN BY R. J. HANSON. 27 JULY 1973
16 . .*******............**................................*..............
17 *
18 DSDOT CSECT
19 USING *.15 BASE REGISTER ASSIGNMENT
20 SAVE (1.9)..* SAVE USED'REGISTER CONTENTS
21 LM 2.6.0(1) GET ALL POINTERS TO ARCS. IN REGS. 2-6
22 SDR 0.0 SET DSDOT = 0
23 L 7.0(2) GET N AND
24 LTR 7.7 (SET CONDITION CODES) AND SEE
25 BNP DONE IF IT'S .LE. 0. DEFINE DSDOT = 0 IF SO.
26 L 2.7 SAVE N FOR COUNTING
27 BCTR 7.0 COMPUTE N-I
28 L 6.0(6) GET INCY AND SEE
29 SLA 6.2 (SET CONDITION CODES AND MULTIPLY - 4)
30 BP INCXT IF IT'S .GT. 0
31 LR 9.6 GET INCY * 4 AND
32 MR .17 COMPUTE INCY-(N-1)-4 AND
33 SR 5.9 FIX BASE ADDRESS OF Y()
34 INCXT L 4.0(4) GET INCX AND SEE
35 SLA 4.2 (SET CONDITION CODES AND MULTIPLY * 4)
36 BP LOOP IF IT'S .GT. 0
37 LR 1.4 GET INCX * 4 AND
38 MR 8.7 COMPUTE INCX.(N-I)*4 AND
39 SR 3.9 FIX BASE ADDRESS OF X()
40 LOOP LE 2.0(0.3) GET A(I) AND
41 ME 2.0(0.5) MULTIPLY BY B(I) AND
42 ADR 0.2 ACCUMULATE INNER PRODUCT
43 AR 3.4 THEN FIX THE
44 AR 5.6 ADDRESSES AND CHECK FOK
45 BCT 2.LOOP END OF THE LOOP
46 DONE RETURN (1.9).T GO BACK TO THE CALLING PROGRAM
47 END

Figure B-3. IBM 360/75 Assembly Code for DSDOT

JPL Technical Memorandum 33-660 13

REFERENCES

1. Krogh, F. T., On the Use of Assembly Code for Heavily Used Modules
in Linear Algebra. Section 914 Internal Technical Memorandum
No. 203, May 2, 1972. (JPL internal document.)

2. Gentleman, M. W., (1972A) Least Squares Computations by Givens
Transformations Without Square Roots, University of Waterloo Report
CSSR-2062, 17 pp.

3. Gentleman, W. M., (1972B) Basic Procedures for Large, Sparse or
Weighted Linear Least Squares Problems, University of Waterloo
Report CSSR-2068, 14 pp.

14 JPL Technical Memorandum 33-660
NASA - JPL - Coml., L.A., Calif.

